- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Hotz, Ingrid (4)
-
Wang, Bei (4)
-
Krake, Tim (2)
-
Weiskopf, Daniel (2)
-
Yan, Lin (2)
-
Zhou, Youjia (2)
-
Bujack, Roxana (1)
-
Garth, Christoph (1)
-
Klotzl, Daniel (1)
-
Klötzl, Daniel (1)
-
Masood, Talha Bin (1)
-
Natarajan, Vijay (1)
-
Rasheed, Farhan (1)
-
Schulte, Kathrin (1)
-
Sridharamurthy, Raghavendra (1)
-
Stober, Jonathan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Klötzl, Daniel; Krake, Tim; Zhou, Youjia; Hotz, Ingrid; Wang, Bei; Weiskopf, Daniel (, The Visual Computer)Abstract We propose a novel method for the computation of Jacobi sets in 2D domains. The Jacobi set is a topological descriptor based on Morse theory that captures gradient alignments among multiple scalar fields, which is useful for multi-field visualization. Previous Jacobi set computations use piecewise linear approximations on triangulations that result in discretization artifacts like zig-zag patterns. In this paper, we utilize a local bilinear method to obtain a more precise approximation of Jacobi sets by preserving the topology and improving the geometry. Consequently, zig-zag patterns on edges are avoided, resulting in a smoother Jacobi set representation. Our experiments show a better convergence with increasing resolution compared to the piecewise linear method. We utilize this advantage with an efficient local subdivision scheme. Finally, our approach is evaluated qualitatively and quantitatively in comparison with previous methods for different mesh resolutions and across a number of synthetic and real-world examples.more » « less
-
Yan, Lin; Masood, Talha Bin; Sridharamurthy, Raghavendra; Rasheed, Farhan; Natarajan, Vijay; Hotz, Ingrid; Wang, Bei (, Computer Graphics Forum)null (Ed.)
-
Bujack, Roxana; Yan, Lin; Hotz, Ingrid; Garth, Christoph; Wang, Bei (, Computer Graphics Forum)Abstract We present a state‐of‐the‐art report on time‐dependent flow topology. We survey representative papers in visualization and provide a taxonomy of existing approaches that generalize flow topology from time‐independent to time‐dependent settings. The approaches are classified based upon four categories: tracking of steady topology, reference frame adaption, pathline classification or clustering, and generalization of critical points. Our unique contributions include introducing a set of desirable mathematical properties to interpret physical meaningfulness for time‐dependent flow visualization, inferring mathematical properties associated with selective research papers, and utilizing such properties for classification. The five most important properties identified in the existing literature include coincidence with the steady case, induction of a partition within the domain, Lagrangian invariance, objectivity, and Galilean invariance.more » « less
An official website of the United States government
